⑴ 高德数据分析师电话面试都问些什么问题
其实,不管是什么样的面试形,问的问题都差不多,万变不离其宗,都有规专律可寻。其实对所有属的面试官而言,只有一个目的:在最短的时间里了解到你最多的信息。想高效率的准备面试,先从这七个大方面着手吧!
一、基本情况
1、请用最简洁的语言描述您从前的工作经历和工作成果。
二、专业背景
您认为此工作岗位应当具备哪些素质?
三、工作模式
您平时习惯于单独工作还是团队工作?
四、价值取向
您对原来的单位和上司的看法如何?
五、资质特性
您如何描述自己的个性?
六、薪资待遇
是否方便告诉我您目前的待遇是多少?
七、背景调查
您是否介意我们通过您原来的单位迚行一些调查?
95%的面试基本上都离不开这些问题,当然还有可能问一些专业问题,我想如果你做过的话应该都不是什么难事,一般面试官都不会过多的问专业方面的问题的。
⑵ 淘宝数据分析师面试问题
一般你会使用一些SPSS Excel等相关软件去分析一些数据问题,能解决,想多了解或学习数据分析师可以去CDA数据分析师官网看看,那里有好多这方面的人才交流学习一些。
⑶ 作为一名数据分析师,工作职责是什么
就互联网的自身特点来讲,其本身就具有数字化和互动性的特征,这种特征给内数据搜集、整理、研究带容来了重大突破。以往的数据分析师要花费比较多的时间、金钱和精力获取支撑分析、研究的数据,数据的连续性、全面性、丰富性和及时性都与互联网时代相差很多。
根据目前的行业发展来看,数据分析师的价值与此类似。在新出出版行业,不论在任何时候,媒体行业的运营人员是否能够准确、及时和详细地了解受众的状况和变化,这些都是媒体成败的关键所在。
与传统数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。所以,互联网时代的数据分析师必须学会利用技术手段进行高效的数据处理。最重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
此外,对于新闻出版等内容产业来说,更为关键的是,数据分析师可以发挥内容消费者数据分析的职能,这是支撑新闻出版机构改善客户服务的关键职能。
关于数据分析师的工作职责有哪些,青藤小编就和大家分享到这里了,以上就是关于数据分析师的技能要求的内容,希望可以为您提供一些帮助。如果您还想了解更多关于大数据、数据分析师、大数据工程师等内容,可以点击本站的其他文章进行学习。
⑷ 怎么面试大数据分析师
1、考察对数据的敏感度。
面试的时候,数据部门经理问一些生活中的内数据的问题,一个优容秀的数据分析师对数据有很强的敏感度,生活中常见的数据,你直观的感受往往能反应出你的资质。
2、数学基本概念和统计学方法。
遇到的有排列组合的问题的,还有指数衰减的定义等等。或者直接给一个问题或者数据,问问你打算用什么样的方法怎样去分析。在给你数据的时候,一定要记得说数据预处理!这一点非常重要,这样会让人觉得你的回答逻辑清楚,有条有理。如果想从事与数据科学相关的岗位,需要学习的数据知识可以参考成都加米谷大数据培训机构的:想从事数据科学相关岗位,这些数学基础“必备”。
3、编程能力。
你一定要有自己熟练的软件,常问的问题是,你一般用excel干什么,常用的函数有哪些?你是否用过数据透视表?是够用过宏?你平时多久用一次R?你是否用过或了解过并行?等等关于软件的问题。在面试小公司时,HR会可能直接给你一个数据进行数据分析,题目一般给的都不太难。
⑸ 公司在面试数据分析师的工作时具体会被问什么样的问题
第一、你之前有过的工作经验,第二、你有的成功案例、三、看你是不是对数据感兴趣。
⑹ 如何准备数据分析师面试需要具备哪些能力
【导读】众所周知,随着社会的发展,数据分析师成为了炙手可热的热门执业,一方面是其高薪待遇另一方面就是其未来广阔的发展前景。那么对于想入行的求职者们,如何准备数据分析师面试?需要具备哪些能力呢?小编认为需要具备以下几项能力,一起来看看吧!希望对大家有所帮助。
1. 理论知识(概率统计、概率分析等)
掌握与数据分析相关的算法是算法工程师必备的能力,如果你面试的是和算法相关的工作,那么面试官一定会问你和算法相关的问题。比如常用的数据挖掘算法都有哪些,EM
算法和 K-Means 算法的区别和相同之处有哪些等。
有些分析师的工作还需要有一定的数学基础,比如概率论与数理统计,最优化原理等。这些知识在算法优化中会用到。
除此以外,一些数据工程师的工作更偏向于前期的数据预处理,比如 ETL
工程师。这个职位考察你对数据清洗、数据集成的能力。虽然它们不是数据分析的“炼金”环节,却在数据分析过程中占了 80% 的时间。
2. 具体工具(sklearn、Python、Numpy、Pandas 等)
工程师一定需要掌握工具,你通常可以从 JD 中了解一家公司采用的工具有哪些。如果你做的是和算法相关的工作,最好还是掌握一门语言,Python
语言最适合不过,还需要对 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。
数据 ETL 工程师还需要掌握 ETL 工具,比如 Kettle。
如果是数据可视化工作,需要掌握数据可视化工具,比如 Python 可视化,Tableau 等。
如果工作和数据采集相关,你也需要掌握数据采集工具,比如 Python 爬虫、八爪鱼。
3. 业务能力(数据思维)
数据分析的本质是要对业务有帮助。因此数据分析有一个很重要的知识点就是用户画像。
用户画像是企业业务中用到比较多的场景,对于数据分析来说,就是对数据进行标签化,实际上这是一种抽象能力。
以上就是小编今天给大家整理发送的关于“如何准备数据分析师面试?需要具备哪些能力?”的相关内容,希望对大家有所帮助。想了解更多关于数据分析及人工智能就业岗位分析,关注小编持续更新。
⑺ 招聘数据分析师时一般会出哪些面试题
下面给你整理了一部分应聘数据分析师会遇到的问题:
1、你处理过专的最大的属数据量?你是如何处理他们的?处理的结果。
2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?
3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?
4、什么是:协同过滤、n-grams, map rece、余弦距离?
5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?
6、如何设计一个解决抄袭的方案?
7、如何检验一个个人支付账户都多个人使用?
8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?
9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的定义并不是那么好?
10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?
11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?
12、你最喜欢的编程语言是什么?为什么?
⑻ 数据分析面试注意什么
介绍项目经验:
参考STAR原则:即针对Situation(情景)、Task(任务)、Action(行动)和Result(结果)四个维度的追问项目经验,从而深入了解面试者的能力和特质
重点通过面试者具体在何时,在什么样的项目环境、范围中,以什么样的团队分工,用怎样的知识技能经验,具体完成什么任务?并包括对困难的处理,对结果的反思。
互联网公司的数据分析师使用Excel+SQL+R/Python的比较多,建议先看下JD上的要求,做好相关的准备。Excel至少要会用数据透视表和vlookup,VBA很有用但在面试中问到的不多,具体看JD要求。对于要求使用SQL的公司,一般会安排笔试或上机测试。也有公司不要求使用SQL,比方说一些BI比较成熟、业务发展比较慢的公司,或者一些使用第三方Saas服务的小公司。统计工具一般要求会一种就可以了,建议使用R或者Python,一方面是因为公司会要求尽量使用开源工具,另一方面可以让面试官进行针对性的提问。如果你使用的是面试官不太了解的工具,就丢掉了一个重要的加分项。对于应届生来说,是加分越多越好,而不是犯的错误越少越好。
通过让面试者对自己所处行业的分析,以及跨行业的对比,了解面试者是否具备宽阔的视野和对外部环境敏感的分析意识。
其实相对于数据分析技术来说,企业更注重的是分析师的综合能力。这些能力包括快速的学习能力、良好的沟通能力、清晰的逻辑分析能力、高度的概括归纳能力,当然还有最基本的数据分析能力。
所以你们看到数据分析能力是最基本的,这里包括数据分析的知识、思路、算法、模型、工具。
在考察完基本的数据分析能力后,企业其实最关心的不是这个数据分析师会多少种算法、懂得多少个模型。企业应该关心的是数据分析师到底能不能帮你解决实际问题,也就是数据分析的工作到底能不能落地。
所谓的落地就是,分析师能不能发现问题、问题归因、验证假设、提出解决方案、方案的投入产出与决策建议、方案落实的效果分析以及调优、方案的总结和未来项目的风险规避。
⑼ 在面试数据分析师这个职位的时候,一般会被问到哪些
首先,得看你是从事什么数据分析。
比如你是一名淘宝电商数据分析师,一般会问到,同行竞争如何,同行是怎么达到那样的销售额的,为什么人家店铺排在前几。商品能达到TOP前十,为什么没有点击率,没有转换,没有下单量,是主图设计不够吸引,还是详情页不够详细,又或者说是客服服务不够好等。
不够全面的解释,希望对你有帮助